Qualifying Exam Complex Analysis May, 2022

- 1. Prove that for any $z_1, z_2 \in \{z \in \mathbb{C} : \text{Re} \, z < 0\}, |e^{z_1} e^{z_2}| \le |z_1 z_2|.$
- 2. Let f be a non-constant meromorphic function on \mathbb{C} with P being the set of its poles. Prove that $f(\mathbb{C} \setminus P)$ is dense in \mathbb{C} .
- 3. Let (f_n) be a sequence of conformal maps defined on a complex domain D. Suppose $f_n \to f$ uniformly on each compact subset of D. Prove that f is either constant or a conformal map. Remark. A conformal map is a holomorphic and injective map. A complex domain

4. Let z_0 be a pole of f. Prove that z_0 is an essential singularity of e^f .

is a nonempty connected open subset of \mathbb{C} .

5. Compute

$$\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)(x^2+4)} \, dx.$$