## Qualifying Exam Complex Analysis May, 2022

1. Prove that for any $z_{1}, z_{2} \in\{z \in \mathbb{C}: \operatorname{Re} z<0\}$, $\left|e^{z_{1}}-e^{z_{2}}\right| \leq\left|z_{1}-z_{2}\right|$.
2. Let $f$ be a non-constant meromorphic function on $\mathbb{C}$ with $P$ being the set of its poles. Prove that $f(\mathbb{C} \backslash P)$ is dense in $\mathbb{C}$.
3. Let $\left(f_{n}\right)$ be a sequence of conformal maps defined on a complex domain $D$. Suppose $f_{n} \rightarrow f$ uniformly on each compact subset of $D$. Prove that $f$ is either constant or a conformal map.
Remark. A conformal map is a holomorphic and injective map. A complex domain is a nonempty connected open subset of $\mathbb{C}$.
4. Let $z_{0}$ be a pole of $f$. Prove that $z_{0}$ is an essential singularity of $e^{f}$.
5. Compute

$$
\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x
$$

